Carene terpenoids by gold-catalyzed cycloisomerization reactions

Alois Fürstner* and Peter Hannen

Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany. E-mail: fuerstner@mpi-muelheim.mpg.de; Fax: +49 208 306 2994; Tel: +49 208 306 2342

Received (in) 10th August 2004, Accepted 6th September 2004 First published as an Advance Article on the web 6th October 2004

Propargyl acetates in the presence of catalytic amounts of AuCl₃ constitute synthetic equivalents of α -diazoketones as illustrated by a concise entry into the carene family of natural products.

A significant number of polycyclic terpenoid skeletons of varying complexity feature a cyclopropane ring. Representative examples are 2-carene **1** and its isoprenoid homologues sesquicarene **2** and isosesquicarene **3**.¹ Although many innovative syntheses of such compounds have been developed in the past,² the intramolecular cyclopropanation of unsaturated α -diazoketones followed by derivatisation of the resulting cyclopropyl carbonyl derivatives plays a pre-eminent role in this context (Scheme 1, path A).^{3,4} As outlined below, however, this classical approach⁵ may find an attractive and less hazardous equivalent in metal-catalyzed cycloisomerization reactions of readily accessible propargyl acetates (path B).

Complexation to a late transition metal cation $(\mathbf{A} \rightarrow \mathbf{B})$ renders alkynes susceptible to attack by (tethered) nucleophiles such as alkenes, arenes, ethers or carbonyl groups.^{6,7} If the carbonyl is part of a propargyl acetate unit, an anchimerically assisted formation of a metal carbene will ensue ($\mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{D}$), which can be trapped by suitably located alkenes to form a cyclopropane ring adjacent to the

Scheme 1 Terpenes of the carene family and preparation of cyclopropyl ketones from α -diazoketones (path A) or by metal-catalyzed rearrangement of propargyl acetates (path B).

Scheme 2 Plausible mechanism for the conversion of propargyl acetates bearing tethered olefins into cyclopropyl ketones, *cf.* text.

incipient enol ester ($D \rightarrow E$); hydrolysis then releases the parent cyclopropyl carbonyl derivative ($E \rightarrow F$, Scheme 2). Although this type of rearrangement was originally discovered as a very minor side reaction in transformations mediated by ZnCl₂,⁸ late transition metal salts turned out to be superior catalysts due to the pronounced affinity of these 'soft' cations to the π -systems of the substrate.^{9–11}

In an attempt to scrutinize this transformation by natural product synthesis, commercial geranylacetone **4** was converted into propargyl acetate **5** in two routine steps (Scheme 3). Exposure of this compound to catalytic amounts of $PtCl_2$ in toluene, as previously recommended for rearrangements of this type,¹⁰ resulted in the formation of the desired bicyclo[4.1.0] skeleton **6**. However, significant amounts of allenyl acetate **9**¹² formed by a [3,3]-sigmatropic rearrangement of the substrate were also detected.

Since this by-product is difficult to separate from $\mathbf{6}$ by any of the conventional methods, we chose to optimise the catalytic system further.

Amongst the host of metal salts screened,[†] the use of AuCl₃ (5 mol%)¹³ in 1,2-dichloroethane at ambient temperature afforded by far the best results. Under these conditions, the expected enol ester **6** was formed in excellent yield and purity (*ca.* 95%), with only

Scheme 3 Reagents and conditions: [a] $HC \equiv CMgBr$, THF, 0 °C \rightarrow rt, 96%; [b] Ac₂O, DMAP, Et₃N, 98%; [c] AuCl₃ (5 mol%), 1,2-dichloroethane; [d] K₂CO₃, MeOH, 74% (over two steps); [e] see ref. 4; [f] LiAlH₄, Et₂O, 0 °C \rightarrow rt, 41% (over two steps); [g] L-Selectride[®], THF, -78 °C \rightarrow rt, 93%; [h] PPh₃, DEAD, THF, 70% (GC).

Scheme 4 Reagents and conditions: [a] AuCl₃ (5 mol%), 1,2-dichloroethane, 98% (11), 87% (14); [b] K₂CO₃, MeOH, 60% (12, dr = 5 : 1), 65% (15, dr = 4.5 : 1).

marginal amounts of allenyl acetate **9** being detectable in the crude reaction mixture. No cyclopropanation of the distal double bond of **5** was observed, thus showing that the cyclization of the conceivable 10-membered ring does not compete with the kinetically and thermodynamically more favorable formation of the sesquicarane skeleton during the AuCl₃-catalyzed process. Therefore it is not surprising that the truncated substrate **10** reacts equally effectively, affording product **11** in almost quantitative yield (Scheme 4).[‡]

Since compound **6** is rather labile, it was immediately hydrolysed with K_2CO_3 in MeOH to give sesquicarone **7** as a 6.7 : 1 mixture of diastereomers (74%, >96% pure by GC), which are known precursors to sesquicarene **2**.⁴ The overall yield of **7** obtained by this novel isomerization/hydrolysis sequence is significantly higher than that of the α -diazoketone routes reported in the literature.⁴ It is also interesting to note that a reductive rather than hydrolytic cleavage of the ester bond in **6** with LiAlH₄ in Et₂O afforded the *endo* isomer of **7** exclusively, although in somewhat lower yield (41% over cycloisomerization/reduction). Treatment of *endo*-**7** with L-Selectride[®] furnished alcohol **8**, which converted into **2** on treatment with PPh₃ and DEAD at ambient temperature. As previously noticed,⁴ the purification of this hydrocarbon derivative requires preparative-GC.§

Next, the effect of the geometry of the reacting double bond on the outcome of the intramolecular cyclopropanation was investigated. To this end, nerylacetone was converted into propargyl acetate **13** on reaction with ethynylmagnesium bromide¹⁵ followed by acetylation under standard conditions. Treatment of compound **13** containing a (*Z*)-configured double bond in its backbone with AuCl₃ (5 mol%) in 1,2-dichloroethane at ambient temperature afforded enol ester **14** which is isomeric to product **6** derived from the geranyl series (Scheme 4). Therefore it must be concluded that the Au-catalyzed skeletal rearrangement proceeds *stereospecifically*, translating the configuration of the reacting alkene into the stereochemistry of the emerging cyclopropane unit.

In summary, it is shown that the AuCl₃-catalyzed rearrangement of propargyl acetates constitutes an attractive alternative to the use of α -diazoketones for the preparation of cyclopropyl carbonyl derivatives and opens a stereoselective entry into various terpene derivatives belonging to the carene family. Further investigations on the use of late transition metals as selective ' π -acids' are underway and will be reported in due course.

Notes and references

† This includes the following metal salts and complexes: PtCl₂, PtCl₄, Pt(acac)₂, (cod)PtCl₂, PtBr₂, PtI₂, Pt(CN)₂, (PhCN)₂PtCl₂, AgBF₄, AgOTf, PdCl₂, InCl, InCl₃, RuCl₃·nH₂O, FeCl₃, ZnI₂, CoBr₂·nH₂O, IrCl₃, NiCl₂,

[(cod)RhCl]₂, [(CO)₃RuCl₂]₂, [(Ph₃P)AuCl]/AgSbF₆. Solvents screened: toluene, CH₂Cl₂, 1,2-dichloroethane, DME, THF, MeCN.

[‡] Representative procedure: a solution of 3,7-dimethyloct-6-en-1-yn-3-yl acetate **10** (200 mg, 1.03 mmol)¹⁴ in 1,2-dichloroethane (10 mL) was added to a Schlenk-flask charged with AuCl₃ (16 mg, 0.052 mmol) under argon. After stirring for 12 h, the mixture was filtered through a pad of Celite which was carefully rinsed with hexanes–EtOAc (3 : 1). Evaporation of the combined filtrates afforded product **11** as a pale-brown syrup (197 mg, 98%, >94% pure by GC). Because this compound is fairly labile, it was immediately hydrolyzed with K₂CO₃ in MeOH to give 2-carvone **12**. Characteristic data for **11**: ¹H NMR (300 MHz, CDCl₃): δ 2.24 (m, 1 H), 1.6 (s, 3 H), 1.80 (m, 2 H), 1.64 (m, 1 H), 1.53 (s, 3 H), 1.09 (m, 2 H), 1.06 (s, 3 H), 0.99 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 141.0, 118.6, 29.3, 27.6, 24.5, 24.2, 23.5, 20.5, 17.2, 15.6, 15.3; IR (KAP): 2918, 2865, 1753, 1698, 1449, 1367, 1208, 1165, 1097, 1044, 1009, 922, 889 cm⁻¹.

§ An efficient method for the conversion of **7** into **2** avoiding this cumbersome purification by prep-GC involves reduction of the corresponding enol triflate with a hydride donor in the presence of Pd(0). Details will be reported in a forthcoming full paper.

- 1 E. Breitmaier, *Terpene. Aromen, Düfte, Pharmaka, Pheromone*, Teubner, Leipzig, 1998.
- 2 Representative examples: C. R. Johnson and J. F. Kadow, J. Org. Chem., 1987, 52, 1493; W. B. Motherwell and L. R. Roberts, Tetrahedron Lett., 1995, 36, 1121; T. Uyehara, K. Ogata, J.-I. Yamada and T. Kato, J. Chem. Soc., Chem. Commun., 1983, 17; K. Kitatani, T. Hiyama and H. Nozaki, J. Am. Chem. Soc., 1976, 98, 2362 and refs. cited therein.
- 3 Reviews: M. P. Doyle, M. A. McKervey and T. Ye, *Modern Catalytic Methods for Organic Synthesis with Diazo Compounds*, Wiley, New York, 1998; H. M. L. Davies, in *Comprehensive Organic Synthesis*, B. M. Trost and I. Fleming, eds., Pergamon, Oxford, 1991, vol. 4, p. 1031; A. Padwa and K. E. Krumpe, *Tetrahedron*, 1992, **48**, 5385.
- R. M. Coates and R. M. Freidinger, *Tetrahedron*, 1970, 26, 3487;
 K. Mori and M. Matsui, *Tetrahedron*, 1970, 26, 2801; E. J. Corey and
 K. Achiwa, *Tetrahedron Lett.*, 1969, 23, 1837; E. J. Corey and
 K. Achiwa, *Tetrahedron Lett.*, 1969, 23, 3257; G. Büchi and J. D. White,
 J. Am. Chem. Soc., 1964, 86, 2884; F. Medina and A. Manjarrez, *Tetrahedron*, 1964, 20, 1807; see also: E. J. Corey, K. Achiwa and
 J. A. Katzenellenbogen, J. Am. Chem. Soc., 1969, 91, 4318; J. J. Plattner,
 U. T. Bhalerao and H. Rapoport, J. Am. Chem. Soc., 1969, 91, 4933.
- 5 α-Diazoketone cyclizations were pioneered by: G. Stork and J. Ficini, J. Am. Chem. Soc., 1961, 83, 4678.
- Reviews: M. Méndez and A. M. Echavarren, *Eur. J. Org. Chem.*, 2002, 15;
 G. C. Lloyd-Jones, *Org. Biomol. Chem.*, 2003, 1, 215;
 C. Aubert, O. Buisine and M. Malacria, *Chem. Rev.*, 2002, 102, 813;
 M. Méndez, V. Mamane and A. Fürstner, *Chemtracts*, 2003, 16, 397.
- 7 For contributions from this laboratory, see: A. Fürstner, H. Szillat, B. Gabor and R. Mynott, *J. Am. Chem. Soc.*, 1998, **120**, 8305; A. Fürstner, H. Szillat and F. Stelzer, *J. Am. Chem. Soc.*, 2000, **122**, 6785; A. Fürstner, F. Stelzer and H. Szillat, *J. Am. Chem. Soc.*, 2001, **123**, 11 863; A. Fürstner and V. Mamane, *J. Org. Chem.*, 2002, **67**, 6264; A. Fürstner and V. Mamane, *Chem. Commun.*, 2003, 2112; V. Mamane, P. Hannen and A. Fürstner, *Chem. Eur. J.*, 2004, **10**, 4556.
- 8 H. Strickler, J. B. Davis and G. Ohloff, Helv. Chim. Acta, 1976, 59, 1328.
- 9 V. Rautenstrauch, J. Org. Chem., 1984, 49, 950; K. Kato, Y. Yamamoto and H. Akita, *Tetrahedron Lett.*, 2002, 43, 6587.
- E. Mainetti, V. Mouriès, L. Fensterbank, M. Malacria and J. Marco-Contelles, *Angew. Chem., Int. Ed.*, 2002, 41, 2132;
 Y. Harrak, C. Blaszykowski, M. Bernard, K. Cariou, E. Mainetti, V. Mouriès, A.-L. Dhimane, L. Fensterbank and M. Malacria, *J. Am. Chem. Soc.*, 2004, 126, 8656; K. Miki, K. Ohe and S. Uemura, *J. Org. Chem.*, 2003, 68, 8505.
- 11 V. Mamane, T. Gress, H. Krause and A. Fürstner, J. Am. Chem. Soc., 2004, 126, 8654.
- 12 U. Koch-Pomeranz, H.-J. Hansen and H. Schmid, *Helv. Chim. Acta*, 1973, 56, 2981.
- 13 Reviews: G. Dyker, Angew. Chem., Int. Ed., 2000, **39**, 4237; A. S. K. Hashmi, Gold Bull., 2003, **36**, 3.
- 14 P. H. Kahn and J. Cossy, Tetrahedron Lett., 1999, 40, 8113.
- 15 A. G. Myers and K. R. Condroski, J. Am. Chem. Soc., 1995, 117, 3057.